

Globally Optimal Horizontal Condenser Design

João Pedro K. Domingues^a, André L.H. Costa^a, Miguel Bagajewicz^b

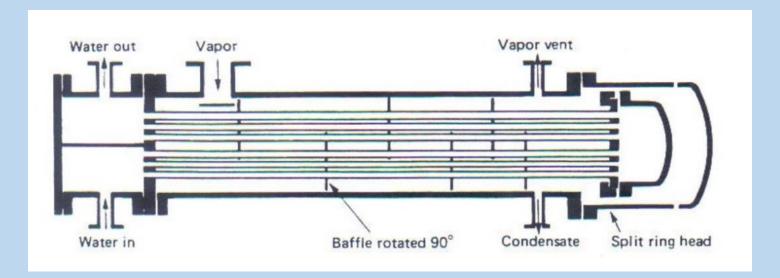
(a)Universidade do Estado do Rio de Janeiro (b) University of Oklahoma

December 6, 2019

Introduction

This project aims at analyzing and comparing the application of two different computational approaches for optimal condenser design

- Mixed Integer Linear Prorgamming (MILP)
- Set-Trimming.


The models for both methods are compared and the diferences in performance are discussed.

Condenser Model

- ✓ The analysis is focused on shell and tube heat exchangers.
- ✓ A horizontal single shell E-shell type is used.
- ✓ An even number of tube passes is considered
- ✓ Shell side condensation is assumed

Source: *Heat Exchanger Design Handbook*

MILP

Mixed-Integer Linear Programming

- The original problem equations are non-linear.
- Geometry is described using discrete variables.
- Model reformulation is performed to obtain a Linear Model.

Set-Trimming

Sequential Set Trimming

- Gradual elimination of infeasible subsets of candidate solutions is performed.
- This is done apllying sequentially differente constraints of the problem
- When finished, the optimum is obtained by inspection, enumeration or mathematical programming.

MINLP

Objective function: Min A

Heat transfer area $A = Ntt \pi dte L$

Excess area
$$A \ge \left(1 + \frac{\widehat{Aexc}}{100}\right) * Areq$$

$$\hat{Q} = UAreq \widehat{\Delta Tlm} F$$

Heat Transfer Rate Equations
$$\hat{Q} = UAreq \ \widehat{\Delta Tlm} \ F \qquad \widehat{\Delta Tlm} = \frac{(\widehat{Thi} - \widehat{Tco}) - (\widehat{Tho} - \widehat{Tci})}{\ln(\frac{(\widehat{Thi} - \widehat{Tco})}{\sqrt{Tho} - \widehat{Tci}})}$$

$$F = \frac{(\hat{R}^2 + 1)^{0.5} \ln\left(\frac{(1-\hat{P})}{(1-\hat{R}\hat{P})}\right)}{(\hat{R}-1) \ln\left(\frac{2-\hat{P}(\hat{R}+1-(\hat{R}^2+1)^{0.5})}{2-\hat{P}(\hat{R}+1+(\hat{R}^2+1)^{0.5})}\right)} \quad \hat{R} = \frac{\hat{Thi}-\hat{Tho}}{\hat{Tco}-\hat{Tci}} \quad \hat{P} = \frac{\hat{Tco}-\hat{Tci}}{\hat{Thi}-\hat{Tci}}$$

$$\widehat{fhi} - \widehat{Tho} \\
\widehat{fco} - \widehat{fci} \\
\widehat{fhi} - \widehat{fc}$$

$$\widehat{P} = \frac{\widehat{fco} - \widehat{fc}}{\widehat{fhi} - \widehat{fc}}$$

Shell-Side Thermal and Hydraulic Equations

Shell heat transfer coeff.

$$hs = 0.954 \cdot \left[\frac{\rho \widehat{s} (\rho \widehat{s} - \rho \widehat{v} \widehat{s}) \widehat{g} \widehat{K} \widehat{s}^{3} L Ntt}{\widehat{m} \widehat{s} \widehat{\mu} \widehat{s}} \right]^{\frac{1}{3}} \cdot (N_{vert})^{-\frac{1}{6}}$$

The total number of tubes $Ntt = Ntp \cdot Npt$ Tubes per vertical row $N_{vert} = \frac{0.78 \, Ds}{Itn^{vert}}$

The vertical tube pitch

$$ltp^{vert} = ltp egin{dcases} 1$$
 , if Square or Triangular pattern $& rac{1}{\sqrt{2}}$, if Rotated Square pattern $& rac{1}{2}$, if Rotated Triangular pattern

Tube-Side Thermal and Hydraulic Equations

Velocity in tubes
$$vt = \frac{4 \, \widehat{mt}}{Ntp \, \pi \, \widehat{\rho t} \, dti^2}$$
 Nusselt # $Nut = 0.023 \, Ret^{0.8} \, \widehat{Prt}^n$

Head loss tube-side $\frac{\Delta Pt}{\widehat{\rho t} \, \widehat{g}} = \frac{ft \, Npt \, L \, vt^2}{2 \, \widehat{g} \, dti} + \frac{K \, Npt \, vt^2}{2 \, \widehat{g}}$ Darcy friction factor $ft = 0.014 + \frac{1.056}{Ret^{0.42}}$ Overall Heat Transfer Coefficient: $U = \frac{1}{\frac{dte}{dti} h^2 + \frac{Rft \, dte}{dti} + \frac{dte}{dti} \ln(\frac{dte}{dti})}$

Objective function: Min A

Heat transfer area $A = \pi \sum_{srow=1}^{srowmax} \widehat{pNtt}_{srow} \widehat{pdte}_{srow} \widehat{pL}_{srow} yrow_{srow}$ Excess area $A \ge \left(1 + \frac{\overline{Aexc}}{100}\right) * Areq$

$$\hat{Q} = UAreq \widehat{\Delta Tlm} \hat{F}_{srov}$$

$$\widehat{Q} = UAreq \ \widehat{\Delta Tlm} \widehat{F}_{srow}$$

$$\widehat{\Delta Tlm} = \frac{(\widehat{Thi} - \widehat{Tco}) - (\widehat{Tho} - \widehat{Tct})}{\ln(\frac{(\widehat{Thi} - \widehat{Tco})}{(\widehat{Tho} - \widehat{Tct})})}$$

$$\hat{F}_{STOW} = \frac{(\hat{R}^2 + 1)^{0.5} \ln\left(\frac{(1 - \hat{P})}{(1 - \hat{R}|\hat{P})}\right)}{(\hat{R} - 1) \ln\left(\frac{2 - \hat{P}(\hat{R} + 1 - (\hat{R}^2 + 1)^{0.5})}{2 - \hat{P}(\hat{R} + 1 + (\hat{R}^2 + 1)^{0.5})}\right)} \qquad \hat{R} = \frac{\hat{Thi} - \hat{Tho}}{\hat{Tco} - \hat{Tci}} \qquad \hat{P} = \frac{\hat{Tco} - \hat{Tci}}{\hat{Thi} - \hat{Tci}}$$

Shell-Side Thermal and Hydraulic Equations

Shell heat transfer coeff.
$$\widehat{phs}_{srow} = 0.994 \cdot \left[\frac{\widehat{ps} \cdot \widehat{pvs})\widehat{gks}^3 \widehat{pL}_{srow} \widehat{pNtt}_{srow}}{\widehat{ms}\widehat{\mu s}} \right]^{\frac{1}{3}} \cdot \left(\frac{\widehat{pDs}_{srow}}{\widehat{pproj}_{srow} \widehat{pate}_{srow}} \right)^{-\frac{1}{6}}$$

The total number of tubes $Ntp = \sum_{srow=1}^{srowmax} \frac{p\overline{Ntt}_{srow}}{p\overline{Npt}_{srow}} yrow_{srow}$ Tubes per vertical row $N_{vert} = \frac{0.78 \, Ds}{ltp^{vert}}$

$$N_{vert} = \frac{0.78 \, Ds}{ltp^{vert}}$$

The vertical tube pitch

$$ltp^{vert} = ltp egin{cases} 1 \text{ , if Square or Triangular pattern} \\ rac{1}{\sqrt{2}}, ext{if Rotated Square pattern} \\ rac{1}{2}, ext{ if Rotated Triangular pattern} \end{cases}$$

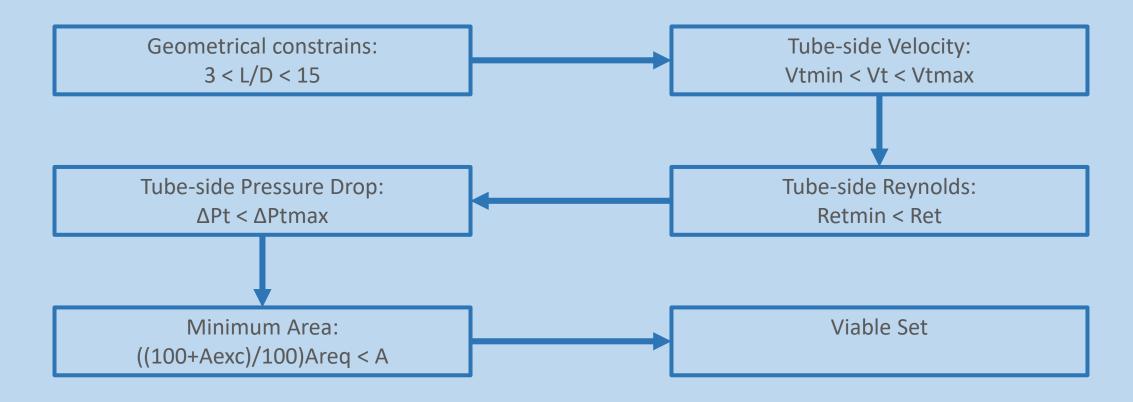
Tube-Side Thermal and Hydraulic Equations

Velocity in tubes
$$vt = \frac{4 \, \widehat{mt}}{\pi \, \widehat{\rho t}} \sum_{srow=1}^{srowmax} \frac{\widehat{pNpt}_{srow}}{\widehat{pNtt}_{srow} \widehat{pdti}_{srow}}^2 yrow_{srow}$$

Nusselt #
$$Nut = 0.023 \left(\frac{4 \widehat{m}t}{\pi \widehat{\mu}t}\right)^{0.8} \widehat{Prt}^n \sum_{srow=1}^{srowmax} \left(\frac{\widehat{pNpt}_{srow}}{\widehat{pNtt}_{srow}\widehat{pdtl}_{srow}}\right)^{0.8} yrow_{srow}$$

Head loss tube-side $\Delta Pt = \sum_{srow=1}^{srowmax} (p\Delta \widehat{Ptturb1}_{srow} + p\Delta \widehat{Ptturb2}_{srow} + (p\Delta \widehat{Ptcab}_{srow} \widehat{K}_{srow})) yrow_{srow}$

Darcy friction factor $ft = 0.014 + \frac{1.056}{Pot^{0.42}}$


Overall Heat Transfer Coefficient:

$$U = \frac{1}{\sum_{srow=1}^{srowmax} \underbrace{\frac{pdte_{srow}yrow_{srow}}{pdti_{srow}} + Rft} \sum_{srow=1}^{srowmax} \underbrace{\frac{pdte_{srow}yrow_{srow}}{pdti_{srow}} + \frac{\sum_{srow=1}^{srowmax} \underbrace{pdte_{srow}}{pdti_{srow}} yrow_{srow}}_{pts_{srow}} + Rfs + \sum_{srow=1}^{srowmax} \underbrace{\frac{yrow_{srow}}{pdti_{srow}}}_{phs_{srow}} + Rfs + \sum_{srow=1}^{srowmax} \underbrace{\frac{yrow_{srow}}{pdti_{srow}}}_{phs_{srow}}$$

Set Trimming Procedure

Set Trimming Procedure

Examples

1 t Water condenser Hot Water	2 Methanol condenser	Acetone condenser	
Hot Water	36.4.4		
210t FF MICH	Methanol	Acetone	
Cooling water	Cooling water	Cooling water	
Cold	Cold	Cold	
	J		

Elapsed Time

Performance Comparison

Heat transfer area (m²)		Solution time (s)		
Example	MILP	Set	MILP	Set
		Trimming	IVIILE	Trimming
1	69.70	69.70	0.756	0.081
2	93.42	93.42	0.849	0.071
3	128.09	128.09	0.833	0.083

Conclusions

- A rigorous linear condenser model was presented
- Set Trimming was also applied to the original nonlinear model.
- We show that set trimming has superior computational time performance.
 It is 10 TIMES FASTER